数据科学项目有很多灵活的部分,需要练习和技巧才能让所有代码、算法、数据集、格式和可视化协调工作。本书将引导你完成5个真实项目,包括根据新闻标题跟踪疾病暴发、分析社交网络以及在广告点击数据中寻找相关模式。
《Python数据科学项目实战》并不止于表面理论和简单示例。在完成每个项目时,你将学习如何解决常见问题,例如数据丢失、混乱的数据以及与构建模型不匹配的算法。你将了解详细的设置说明和常见故障的全面解决方案。最后,通过完成这些项目,你将对自己的技能充满信心。
主要内容
● 网页抓取
● 使用聚类算法组织数据集
● 可视化复杂的多变量数据集
● 训练决策树机器学习算法
Leonard Apeltsin是Anomaly的数据科学主管,他的团队应用高级分析技术来识别医疗欺诈、浪费和滥用情况。