5.2 范围52
5.3 列表与可变性52
5.3.1 克隆57
5.3.2 列表推导57
5.4 函数对象58
5.5 字符串、元组、范围与列表60
5.6 字典61
第6章 测试与调试65
6.1 测试65
6.1.1 黑盒测试66
6.1.2 白盒测试68
6.1.3 执行测试69
6.2 调试70
6.2.1 学习调试72
6.2.2 设计实验72
6.2.3 遇到麻烦时75
6.2.4 找到“目标”错误之后76
第7章 异常与断言77
7.1 处理异常77
7.2 将异常用作控制流80
7.3 断言82
第8章 类与面向对象编程83
8.1 抽象数据类型与类83
8.1.1 使用抽象数据类型设计程序87
8.1.2 使用类记录学生与教师87
8.2 继承90
8.2.1 多重继承92
8.2.2 替换原则93
8.3 封装与信息隐藏94
8.4 进阶示例:抵押贷款99
第9章 算法复杂度简介103
9.1 思考计算复杂度103
9.2 渐近表示法106
9.3 一些重要的复杂度107
9.3.1 常数复杂度107
9.3.2 对数复杂度108
9.3.3 线性复杂度108
9.3.4 对数线性复杂度109
9.3.5 多项式复杂度109
9.3.6 指数复杂度111
9.3.7 复杂度对比112
第10章 一些简单算法和数据结构114
10.1 搜索算法115
10.1.1 线性搜索与间接引用元素115
10.1.2 二分查找和利用假设116
10.2 排序算法119
10.2.1 归并排序120
10.2.2 将函数用作参数122
10.2.3 Python中的排序123
10.3 散列表124
第11章 绘图以及类的进一步扩展128
11.1 使用PyLab绘图128
11.2 进阶示例:绘制抵押贷款133
第12章 背包与图的*优化问题139
12.1 背包问题139
12.1.1 贪婪算法140
12.1.2 0/1背包问题的*优解143
12.2 图的*优化问题145
12.2.1 一些典型的图论问题149
12.2.2 *短路径:深度优先搜索和
广度优先搜索149
第13章 动态规划155
13.1 又见斐波那契数列155
13.2 动态规划与0/1背包问题157
13.3 动态规划与分治算法162
第14章 随机游走与数据可视化163
14.1 随机游走163
14.2 醉汉游走164
14.3 有偏随机游走170
14.4 变幻莫测的田地175
第15章 随机程序、概率与分布178
15.1 随机程序178
15.2 计算简单概率180
15.3 统计推断180
15.4 分布192
15.4.1 概率分布194
15.4.2 正态分布195
15.4.3 连续型和离散型均匀分布199
15.4.4 二项式分布与多项式分布200
15.4.5 指数分布和几何分布200
15.4.6 本福德分布203
15.5 散列与碰撞204
15.6 强队的获胜概率206
第16章 蒙特卡罗模拟208
16.1 帕斯卡的问题209
16.2 过线还是不过线210
16.3 使用查表法提高性能213
16.4 求π的值214
16.5 模拟模型结束语218
第17章 抽样与置信区间220
17.1 对波士顿马拉松比赛进行抽样220
17.2 中心极限定理225
17.3 均值的标准误差228
第18章 理解实验数据231
18.1 弹簧的行为231
18.2 弹丸的行为238
18.2.1 可决系数240
18.2.2 使用计算模型241
18.3 拟合指数分布数据242
18.4 当理论缺失时245
第19章 随机试验与假设检验247
19.1 检验显著性248
19.2 当心P-值252
19.3 单尾单样本检验254
19.4 是否显著255
19.5 哪个N257
19.6 多重假设258
第20章 条件概率与贝叶斯统计261
20.1 条件概率262
20.2 贝叶斯定理263
20.3 贝叶斯更新264
第21章 谎言、该死的谎言与统计学267
21.1 垃圾输入,垃圾输出267
21.2 检验是有缺陷的268
21.3 图形会骗人268
21.4 CumHocErgoPropterHoc270
21.5 统计测量不能说明所有问题271
21.6 抽样偏差272
21.7 上下文很重要273
21.8 慎用外推法273
21.9 得克萨斯神枪手谬误274
21.10 莫名其妙的百分比276
21.11 不显著的显著统计差别276
21.12 回归假象277
21.13 小心为上278
第22章 机器学习简介279
22.1 特征向量281
22.2 距离度量283
第23章 聚类288
23.1 Cluster类289
23.2 K-均值聚类291
23.3 虚构示例292
23.4 更真实的示例297
第24章 分类方法303
24.1 分类器评价303
24.2 预测跑步者的性别306
24.3 K-*邻近方法308
24.4 基于回归的分类器312
24.5 从“泰坦尼克”号生还320
24.6 总结325
Python3.5速查表326